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1. Introduction & background research
The dramatic increase in Artificial Intelligence (AI) ca-
pabilities has led to a wide range of innovations that can 
advance nearly every aspect of our society and econo-
my—from business and healthcare to transportation and 
cybersecurity. AI technologies are often utilized to exert 
a beneficial effect by informing, advising or simplifying 
tasks [1]; [2]; [3]. Since these products and services are 
among the most sophisticated technologies available, 
many companies are engaged in research and develop-
ment in this field. Due to the ever-increasing growth of 
AI technology, this technology is expected to make great 

contribution to the transformation of raw data and the im-
provement of business processes in the near future.
Up to now, there have many debates over AI failures. Ac-
cording to a 2019 IDC survey, “most organizations have 
reported AI failures in some of their projects, with a quar-
ter having a failure rate of up to 50%. These failures have 
historically been a strong and compelling motivator for 
adequate software testing, and industry surveys suggest 
that AI is one of the most important trends for software 
testing [4]. Therefore, requirements for the production of 
AI products have been presented in the form of standards 
due to the importance of such systems and the high costs 
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related to their failure [5].
Standardization of AI products is a catalyst, indicating 
that a number of prerequisites are defined during the pro-
duction of AI products from defining specifications to 
providing and processing services in order to lay the ba-
sis of production. Standards and evaluations have a spe-
cial role in creating a stable framework for AI, promoting 
the rapid transfer of technologies through research and 
playing a decisive role in the expansion of internation-
al markets [6]. Besides, the implementation of standards 
promotes profitability. For example, the production of 
AI-based systems based on standards has resulted in a 
profit of approximately 17,000,000 euros for Germany 
[7]. AI is evaluated using checklists based on standards. 
A comprehensive and detailed examination of AI systems 
can prevent possible accidents or other potentially unde-
sirable consequences of AI systems as shown in the case 
of smart cities [8].  AI Along with standards, a number of 
criteria have been developed for the evaluation of an AI 
system. The evaluation criteria of AI systems are not lim-
ited to the measurement of accuracy and error but include 
the quality assessment of the AI system. These criteria are 
divided into functional and non-functional evaluation cri-
teria. The former are specific tasks that a system should 
be able to perform and are related to the intended purpose 
of the system, which include things like input/output, 
processing, and data storage requirements [10] [11] [12].
On the other hand, non-functional criteria are constraints 
that specify how well the system should perform its func-
tional tasks and how it must behave under different con-
ditions, including such things as performance, scalability, 
security and usability [9].
In this paper, after examining more than 200 sources, we 
presented the evaluation methods of AI products for the 
first time according to both quantitative and qualitative 
criteria during the life cycle of AI products (data, hard-
ware, software, and machine learning models). Through 
comprehensive evaluations across these four categories, 
stakeholders gain valuable insights into the strengths 
and weaknesses of AI-based systems. This facilitates 
improvements, advancements, and the development of 
more reliable and effective AI solutions) by reviewing 
standards, checklists and methods. Accordingly, we di-
vided these criteria during the production life cycle of AI 
systems into evaluation methods as well as trustworthi-
ness criteria. Trustworthiness AI evaluation is a process 
aimed at assessing and ensuring the reliable behavior and 
performance of AI. This process involves defining appro-
priate criteria and indicators for evaluating AI, designing 
and generating test samples, conducting tests, and analyz-
ing the results. Ultimately, to enhance the trustworthiness 
of AI, necessary adjustments and optimizations can be 

made to the system. This process is crucial for ensuring 
confidence and dependability of AI in various applications. 
According to experts’ opinion, the most important and pri-
oritized criteria are as follows: 1) Transparency, explain-
ability and interpretability [325]; [326]; [327]; 2) Safety 
and reliability [328]; [329]; [330]; 3) Bias [331]; [332]; 4) 
Robustness [333]; [334]; [335]; [336]; 5) Security [337]; 
[338]. Besides, specific testing methods have been present-
ed for AI products section, including software, hardware, 
data, and machine learning methods.
The rest of the paper is organized as follows. After the 
introduction, in the second section, the basics of research 
are presented, including importance of standardization and 
checklists. In the third section, methods are defined with an 
emphasis on the evaluation of AI-based systems (1- Hard-
ware, 2- Software, 3- Data, and 4- Machine Learning mod-
els) and trustworthiness evaluation measurements. In the 
fourth section, summary and results are presented.

2. Research Fundamentals
In this section, before starting the main sections, neces-
sary research background has been briefly reviewed. In 
section 2.1, the important role of standards in life cycle 
of AI-based products has been mentioned, and in section 
2.2, the application of checklists in the evaluation of AI-
based systems is presented. 

 2.1. The Importance of AI Standardization
Standards have become important indicators for measur-
ing technology development rates. The culture of coun-
tries and regions as well as the formal rules of introducing 
products into the market are among the basic, supporting 
and guiding reasons for the standardization of AI. The 
important and key roles of AI standardization are present-
ed in Table 1 [15].

2.2. The Importance of Artificial Intelligence Check-
lists
AI-based products are utilized in various applications, so 
that the trained model is accurate, fair, robust and resistant 
to attacks [13]. Systematic evaluation of AI-based products 
is done by checklists. AI-based product evaluation check-
lists include guidelines and criteria used by manufacturers 
and laboratory AI-based system assessors. By validating 
the information presented in the checklist, the evaluation 
laboratory provides a reliable, explainable and transparent 
product for all the stakeholders [14].
In Table 2, the three key roles of an AI-based system are 
presented. Each of these roles must provide the required 
documentation based on the specified task, and the docu-
mentation provided by the manufacturers is examined by 
the laboratory assessor.
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  Table 1. The Important Role of Artificial Intelligence Standardization 
 

Standardization The role of standardization in Artificial Intelligence 
   The guiding role of 

standardization in technology 
innovation and support for 
industrial development. 

• Facilitating and accelerating innovations in the field of artificial intelligence 
• Assisting in commercializing achievements in the field of artificial intelligence Furthermore, 

standardization can serve as a tool for strengthening technical accomplishments ". 

 
Fast Realization of Innovation 
Universality 

 
 
 

 

• Improving the quality of artificial intelligence products and services 
• Developing an integrated standard accompanied by methods for conducting necessary 

conformity Evaluation tests and evaluations 
• Increasing user safety 
• Protecting user rights 
• Adhering to human principles 
• Ensuring information security 

• Establishing fair and open ecosystems 
Currently, industry giants use methods such as open-source algorithms to create frameworks for 
deep learning and other ecosystems, which makes it more difficult to transfer user data. This 
requires unified standards for achieving collaboration and coordination between producers to 
prevent industry monopolies and user lock-ins, and to create fair and competitive industrial 
ecosystems . 

 
2.2. The Importance of Artificial Intelligence Checklists 
AI-based products are utilized in various applications, and it is essential that the trained model is accurate, fair, 
robust and resistant to attacks [13]. Systematic Evaluation of AI-based products is done by checklists. AI-based 
product evaluation checklists include guidelines and criteria used by manufacturers and laboratory AI-based system 
assessors. By validating the information presented in the checklist, the evaluation laboratory provides a reliable, 
explainable and transparent product for all the stakeholders [14]. 
In Table 2, the three key roles of an AI-based system are presented. Each of these roles must provide the required 
documentation based on the specified task, and the documentation provided by the manufacturers is examined by the 
laboratory assessor. 

 
 Table 2. Key roles of AI-based system 
 

 
Owner of Artificial 

Intelligence 

1. Ensuring testing and evaluation of the system according to established guidelines, criteria, and regulations. 
2. Developing, deploying, and maintaining an artificial intelligence system . 
3. Making informed risk-reward decisions. 
4. Responsible for operating and utilizing the algorithm . 
5. Ensuring sustainable artificial intelligence operations. 

 
Algorithm Owner 

1. The algorithm owner is responsible for ensuring transparency, accountability, and ethicality of the 
algorithm . 

2. Ensuring testing and evaluation of the algorithm's compliance with established guidelines, criteria, and 
regulations. 

3. Documenting the algorithm's performance in documentation. 
4. Monitoring, maintaining, and updating algorithms. 
5. Making informed risk-reward decisions. 

 
3. Methods 
The evaluation of AI-based systems is divided into four categories (Figure 1): 1- Hardware, 2- Software, 3- Data, 
and 4- Machine Learning models. In section 3.1, we will examine trustworthiness evaluation measurements in AI 
system life cycle. In section 3.2 to 3.5 talked about 4 categories of AI based systems and evaluation these methods. 
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3. Methods
The evaluation of AI-based systems is divided into four 
categories (Figure 1): 1- Hardware, 2- Software, 3- Data, 
and 4- Machine Learning models. In section 3.1, we will 
examine trustworthiness evaluation measurements in AI 
system life cycle. In sections 3.2 to 3.5, the four catego-
ries of AI based systems and evaluation of these methods 
are presented.

3.1. Trustworthiness Evaluation Measures in AI sys-
tem Life Cycle
AI system life cycle provides people with a suitable 
framework that can guide them towards their goal. The 
main role of AI system life cycle is to distribute the de-
velopment of AI project into different phases so that the 
development becomes easier and clearly understandable, 
and the phases should be more specific to effectively 
achieve the best possible output. In general, architecture 
of the production cycle of AI-based products includes 
seven phases as follows: 1) Conceptualization; 2) Design 
and development; 3) Validation and verification; 4) De-
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is evaluation based on system code testing and implemen-
tation methods and the latter is divided into several cat-
egories, which are the subsets of risk evaluation criteria 
and reliability measurement as follows: 1) Transparency, 
explainability and interpretability; 2) Safety and reliabil-
ity; 3) Bias; 4) Sustainability; 5) Security, which should 
be checked to measure the trustworthiness of AI systems.
To achieve these goals, the architecture shown in Figure 
2 was taken into account in this paper to review the stan-
dards, checklists, and evaluation criteria. This architec-
ture performs development review operations in phases 
2-6; transparency and explainability, security and privacy 
review operations in phases 2-7; risk management and 
governance operations in phases 1-7.
Also, by reviewing the papers and standards, the check-
lists of this field have been presented in detail in Table 3.

3.1.1. Transparency and Explainability
The complexity of AI-based systems can lead to problems 
in understanding for both users and developers. This “un-
derstanding” can generally be considered in terms of clarity, 
interpretability and explainability of a system as follows:
-Transparency- The level of access to the algorithm and 
data used by the system based on AI ;
-Interpretability- The level of understanding of the way 
the underlying technology works;
-Explainability- The level of understanding how the AI-
based system reached a certain result .
By reviewing the papers and standards, in Table 4 and 
Figures 3 and 4, the standards and methods of this field 
have been examined in detail [14], [17], [18], [242], 
[243], [244], [245], [246], [247], [248], [249], [250], 
[251], [252].
Evaluation methods related to explainability are import-
ant for assessing the transparency and interpretability of 
machine learning models. Two common subcategories 
of evaluation methods for explainability are explainable 
modeling and posthoc explanation .
Explainable modeling involves designing and developing 
machine learning models that are inherently interpreta-
ble. This can involve using simpler algorithms that are 

more transparent, incorporating human-readable features, 
or providing a clear understanding of the decision-mak-
ing process within the model .
Posthoc explanation methods, on the other hand, involve 
explaining the decisions made by a complex machine 
learning model after it has already been trained. This can 
include techniques such as feature importance analysis, lo-
cal explanation methods (e.g. LIME or SHAP), or generat-
ing text or visual explanations to justify model predictions.

3.1.2. Security and Privacy
AI-based systems are expanding and developing, and 
they are used in many fields as a significant alternative to 
traditional methods. However, due to the high complexity 
and extensive potentials that these systems provide, the 
security and privacy may be at risk, which is why security 
evaluation is of particular importance .
By reviewing papers and standards, Tables 4 and 5 of 
standards and checklists [14], methods [19], [20], [21], 
[22] [23], [24], [25] have been reviewed in detail in Fig-
ures 5, 6 and 7 [245], [246], [247], [248], [249], [250], 
[251], [252].
As seen in Figure 5, various security evaluation meth-
ods are described. Security evaluation methods are tech-
niques used to assess the security of a system or appli-
cation. These methods involve systematically analyzing 
the security controls, vulnerabilities, and potential risks 
associated with the target system.
Privacy Evaluation Methods in Figure 6 are described. 
Privacy evaluation methods are techniques used to assess 
the level of privacy protection and compliance within an 
organization or system. These methods can include con-
ducting privacy impact assessments, auditing privacy 
practices, or using privacy control frameworks to evalu-
ate the effectiveness of privacy protections in place.
In Figure 7, we discussed penetration check methods, 
which include two groups: fault tolerance and failure tests. 
Fault tolerance methods are designed to prevent system 
failures by providing redundancy or backup mechanisms, 
such as duplication or mirroring of critical components. 
Failure tests, on the other hand, are used to actively test 

Table 3. Checklist of AI
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Table 3. Checklist of AI 
Legal AI Robust AI Ethical Quality 

model AI 
• Explainability 
• Fairness 
• Respect for human autonomy 
• Prevention of harm 

1. Human agency and oversight 
2. Technical robustness and safety 
3. Privacy preservation and data governance 
4. Transparency 
5. Diversity 
6. Non-discrimination and fairness 
7. Environmental and societal well-being 
8. Accountability 

1. Technical 
2. Non-technical 

 
3.1.1. Transparency and Explainability 
The complexity of AI-based systems can lead to problems in understanding for both users and developers. This 
"understanding" can generally be considered in terms of clarity, interpretability and explainability of a system as 
follows: 
- Transparency- The level of access to the algorithm and data used by the system based on AI ; 
- Interpretability- The level of understanding of the way the underlying technology works; 
- Explainability- The level of understanding how the AI-based system reached a certain result . 
By reviewing the papers and standards, in Table 4 and Figures 3 and 4, the standards and methods of this field have 
been examined in detail [14], [17], [18], [242], [243], [244], [245], [246], [247], [248], [249], [250], [251], [252]. As  
Evaluation methods related to explainability are important for assessing the transparency and interpretability of 
machine learning models. Two common subcategories of evaluation methods for explainability are explainable 
modeling and posthoc explanation . 
Explainable modeling involves designing and developing machine learning models that are inherently interpretable. 
This can involve using simpler algorithms that are more transparent, incorporating human-readable features, or 
providing a clear understanding of the decision-making process within the model . 
Posthoc explanation methods, on the other hand, involve explaining the decisions made by a complex machine 
learning model after it has already been trained. This can include techniques such as feature importance analysis, 
local explanation methods (e.g. LIME or SHAP), or generating text or visual explanations to justify model 
predictions. 
 
Table 4. Transparency & Explainability 
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Fig 3. Methods related to transparency and explainability

Fig 4. Evaluation Methods Related to Explainability
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Transparency& Explainability 
ISO/IEC   24027 [180]; ISO/IEC 24028 [181]; ISO/IEC 5338 [182];ISO/IEC 24368 [183]; ISO/IEC  4213  [184];IEEE P7000- 14 [185]; 
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system vulnerabilities and identify weak points that may 
lead to system failures. These tests involve intentionally 
causing faults or failures in the system to assess its resil-
ience and ability to recover from such events. Both fault 
tolerance and failure tests are important components of 
penetration testing, as they help to ensure the overall se-
curity and reliability of a system.
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Standardization of security and privacy for AI-based products  
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Data protection 
measures 

Access 
control 

Encrypti
on 

Data 
retention 

Incident 
Response 
Plan 

Compliance Risk 
Evaluation 

Third-party 
security 

Privacy Impact 
Evaluation 

Continuous 
monitoring 

Evaluation of 
existing 
measures for 
protecting 
sensitive data 
and ensuring 
privacy 

Evaluation of 
system 
access 
control 
mechanisms 

Examina
tion of 
encrypti
on 
methods 
used. 

Evaluation 
of data 
retention 
policies and 
procedures. 

Evaluation 
of system 
incident 
response 
plans and 
procedures. 

Evaluation 
of system 
compliance 
with 
relevant 
regulations 
and 
standards 
such as 
GDPR and 
ISO 27001 

Examination 
of risk 
Evaluation and 
current 
management 
processes. 

Evaluation of 
existing 
security 
measures for 
vendors and 
third-party 
partners . 

Risks and data 
protection 
impact 
Evaluations 
(DPIAs). 

on-site 
evaluation of 
continuous 
monitoring 
processes 

 

3.1.3. Bias
Bias is an important factor in AI evaluation, which refers 
to the concept of distortion in the collection, processing
and/or interpretation of data by AI systems. Bias can lead 
to discrimination, as well as unfair decisions and results
obtained by AI.[201][202][203].
Different approaches can be utilized to evaluate AI-based 
systems in terms of bias. The first step in bias evaluation
is to identify and analyze the training data of the system. 
For example, if the training data contains only samples with 
certain characteristics, the system may make wrong deci-
sions for data with different characteristics. By reviewing 
the papers and standards, in Figure 8, methods of this 
field have been examined in detail [204][205][206][207]
[208][209][210][211][212].
That can be divided into three categories: Bias mitigation 
algorithms aim to reduce the impact of biases in data and
decision-making processes, while bias reduction tech-
niques focus on eliminating biases entirely from a dataset 
or model, Data Bias refers to systematic errors introduced 
during the data collection process or data analysis that 
result in a misrepresentation of the true information .

3.1.4. Robustness Evaluation Methods
Recognizing the strengths and weaknesses of AI systems 
against new data is one of the most important challeng-

Table 4. Transparency& Explainability
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By reviewing the papers and standards, in Table 4 and Figure 3, 4 the standards and methods of this field have been 
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Transparency& Explainability 
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Figure 3. methods related to transparency and explainability 
 
 



9Advances in the standards & applied sciences 2024; 2 (2)

es for this industry. Therefore, most AI systems have 
adopted the approach of being highly sensitive to envi-
ronmental changes and noises and being prone to easy 
failure, which is why robustness evaluation methods have 
become of high importance. By reviewing the papers and 
standards, in Table 9 and Figure 9, the methods and stan-
dards of this field have been presented in detail in [257], 
[258], and [259].  
In Figure 9, we have categorized the methods of robust-
ness evaluation into four categories: removing outliers, 
dealing with data noise, evaluating the performance of 
several neurons, and adding new data.
Removing outliers: This category includes methods that 
focus on identifying and removing outlier data points 
from the dataset. Outliers can significantly affect the per-
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Bias is an important factor in AI Evaluation, which refers to the concept of distortion in the collection, processing 
and/or interpretation of data by AI systems. Bias can lead to discrimination, as well as unfair decisions and results 
obtained by AI. 
Different approaches can be utilized to evaluate AI-based systems in terms of bias. The first step in bias Evaluation 
is to identify and analyze the training data of the system. For example, if the training data contains only samples 
with certain characteristics, the system may make wrong decisions for data with different characteristics. By 
reviewing the papers and standards, in Figure 8, methods of this field have been examined in detail . 
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3.1.4. Robustness Evaluation Methods 
Recognizing the strengths and weaknesses of artificial intelligence systems against new data is one of the most 
important challenges for this industry. Therefore, most AI systems have adopted the approach of being highly 
sensitivity to environmental changes and noises and being prone to easy failure, which is why robustness Evaluation 
methods have become of high importance. By reviewing the papers and standards, in Table 9 and Figure 9, the 
methods and standards of this field have been presented in detail [257], [258], and [259].   
 
                                                        Table 9. Robustness Standards 

Robustness Standards and Methods 
ISO/IEC TR 24029-1 

 

 
                                           Figure 9. Robustness Evaluation Methods 

8 

 

Figure 7. Penetration Check Methods 
 

3.1.3. Bias 
Bias is an important factor in AI Evaluation, which refers to the concept of distortion in the collection, processing 
and/or interpretation of data by AI systems. Bias can lead to discrimination, as well as unfair decisions and results 
obtained by AI. 
Different approaches can be utilized to evaluate AI-based systems in terms of bias. The first step in bias Evaluation 
is to identify and analyze the training data of the system. For example, if the training data contains only samples 
with certain characteristics, the system may make wrong decisions for data with different characteristics. By 
reviewing the papers and standards, in Figure 8, methods of this field have been examined in detail . 
 

 
                                                                        Figure 8. Bias Evaluation methods 
3.1.4. Robustness Evaluation Methods 
Recognizing the strengths and weaknesses of artificial intelligence systems against new data is one of the most 
important challenges for this industry. Therefore, most AI systems have adopted the approach of being highly 
sensitivity to environmental changes and noises and being prone to easy failure, which is why robustness Evaluation 
methods have become of high importance. By reviewing the papers and standards, in Table 9 and Figure 9, the 
methods and standards of this field have been presented in detail [257], [258], and [259].   
 
                                                        Table 9. Robustness Standards 

Robustness Standards and Methods 
ISO/IEC TR 24029-1 

 

 
                                           Figure 9. Robustness Evaluation Methods 

8 

 

Figure 7. Penetration Check Methods 
 

3.1.3. Bias 
Bias is an important factor in AI Evaluation, which refers to the concept of distortion in the collection, processing 
and/or interpretation of data by AI systems. Bias can lead to discrimination, as well as unfair decisions and results 
obtained by AI. 
Different approaches can be utilized to evaluate AI-based systems in terms of bias. The first step in bias Evaluation 
is to identify and analyze the training data of the system. For example, if the training data contains only samples 
with certain characteristics, the system may make wrong decisions for data with different characteristics. By 
reviewing the papers and standards, in Figure 8, methods of this field have been examined in detail . 
 

 
                                                                        Figure 8. Bias Evaluation methods 
3.1.4. Robustness Evaluation Methods 
Recognizing the strengths and weaknesses of artificial intelligence systems against new data is one of the most 
important challenges for this industry. Therefore, most AI systems have adopted the approach of being highly 
sensitivity to environmental changes and noises and being prone to easy failure, which is why robustness Evaluation 
methods have become of high importance. By reviewing the papers and standards, in Table 9 and Figure 9, the 
methods and standards of this field have been presented in detail [257], [258], and [259].   
 
                                                        Table 9. Robustness Standards 

Robustness Standards and Methods 
ISO/IEC TR 24029-1 

 

 
                                           Figure 9. Robustness Evaluation Methods 

formance of a model and by removing them, we can im-
prove the robustness of the model.
Dealing with data noise: This category includes methods 
that aim to address the presence of noise in the dataset. 
Noisy data can lead to inaccurate predictions and can 
make the model less robust. Techniques such as smooth-
ing or filtering can be used to reduce the impact of noise 
on the model. Robustness in the context of removing one 
or several neurons refers to the ability of a neural network 
to maintain its performance and functionality even when 
certain neurons are removed. This is an important aspect 
of evaluating the effectiveness and reliability of neural 
networks, as it can provide insights into how well the net-
work can adapt to changes and disruptions.

3.1.5. Safety and Reliability
In computer science, safety means ensuring that a sys-
tem, software or device poses no risk to the user or the 
surrounding environment under any circumstances. In 
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general, safety indicates preventing accidents and re-
ducing risks associated with the use of complex systems 
and technologies [261], [262], [263], [264], [265], [266], 
[267], [268], [269], [270], [271], [272], [273], and [279].
In various industries, including automotive, aerospace, 
medical, and military industries, safety is one of the most 
important factors for designing and manufacturing prod-
ucts. In addition, safety is considered an important topic 
in the field of computer security as well as protection of 
data and computer systems .
To check the safety of AI systems, we assess these meth-
ods from two perspectives :
•Software safety in the production cycle of AI products
•Safety of algorithms of machine learning models in the 
production cycle of AI products
By reviewing the articles and standards, Tables 6, 7 and 
8 [280], [281], [282], [283], [284], [285], [286], [284], 
[288], [286], [290], [291], [292], [293], [294], [295], 
[296], [297], [298], [299], [300], [301], [301], [302], 
[303], [304], [305], [306], [307], [308], [309], [310], 
[311], [312], [313], [313], [314], [315], [316], [317], 

[318], [319], [320], [321], [322], [323] present the check-
lists, methods and standards of this area in detail.

3.2.  Hardware Development
We use the RAMI model as one of the most common and 
famous models in the development of AI products. RAMI 
4.0 is the real reference architecture for Industry 4.0 with 
relevant standards. Accordingly, standardization during 
the development of AI systems is carried out according 
to Figure 10.
By reviewing the papers and standards, the standards of 
this field have been presented in detail in Table 9.

3.3. Software Testing 
Most AI-based systems are composed of one or more AI 
components (e.g., an ML model) surrounded by a sub-
stantial array of traditional software that provides a sup-
porting infrastructure, typically consisting of common 
components such as a user interface and a database. Even 
“pure” AI components are implemented in software and 
therefore can be flawed like any other software. There-
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  Table 6. Safety Evaluation standards 

Safety - Application 
Railway- EN 20126 20128- EN20129; Elevator EN 811/PrA2; Autonomus/ ISO 26262; Machinary/ISOM13849 
Process/IEC 61511; ISO/PAS 21448; UL/4600; ISO/IEC AW TR 5469; VDE-AR-E-2842-61-1; IEC 61508; ISO/IEC   24027: ISO/IEC 
24028; IEEEP2846; ISO/DIS      Road Vehicle -Functional Safety; IEC, “Functional safety of electrical/electronic/programmable electronic 
safety-related systems,” IEC 61508:2010; ISO, “Road Vehicles – Functional Safety”; ISO, “Road Vehicles – Functional Safety” ISO 
26262:2018; ISO, “Road Vehicles – Safety of the Intended Function”; ISO/PAS 21448:2019; Koopman, P. & Wagner, M., “Toward a 
framework for highly automated vehicle safety validation,” SAE 2018-01-1071, 2018; Koopman, P. & Fratrik, F. “How many operational 
design domains, objects, and events?” SafeAI 2019; Ministry of Defence, “Safety Management Requirements for Defence Systems,” 
Defence Standard 00-56, 2017; SAE, Guidelines and Methods for Conducting the Safety Evaluation Process on Civil Airborne Systems and 
Equipment, ARP4761, 2012; US Dept. of Commerce, https://www.commerce.gov/issues/regulatory-reform, 7 June 2019. 
US DoD, “Standard Practice: System Safety”, MIL-STD-882E, 11-May-2012; AC 23.1309-1, System Safety Analysis and Evaluation for 
Part 23 Airplanes. 

 
 

  Table 7. General safety of artificial intelligence software [240], [241] 
Software development phase Software Safety Tasks 

Conceptual Design • Initial Hazard Analysis 
• Software Safety Program 

Software Requirements Analysis • Safety requirements analysis 
• Hazard testing 
• Review of safety requirements 
• FTA/FMEA based on user specifications 

Software Architecture Design Software Architecture Design : 
FTA/FMEA of software systems 

Coding and Detailed Designing • Partial software safety analysis: 
FMEA/FTA 

  
• Code-level safety analysis 
Defense Programming 

Testing, Integration, and Verification • Software safety testing, analysis of software safety tests, and software safety case 
studies: 

• Defense Programming  
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Table 8. Safety of Algorithms Of Machine Learning Models

fore, when testing an AI-based system, conventional 
software testing methods are still required. However, 
AI-based systems have a number of special features that 
necessitate additional testing relative to conventional 
software systems. Figure 11 shows the types of tests in 
products based on AI .

3.4. Data governance
In AI(AI), governance is often presented in two parts: 
data and AI. The former refers to the policies, procedures 
and practices that organizations have in place to manage 
the data they collect, store and use. It is critical for ensur-

ing the quality, integrity, and security of data, which are 
in turn essential to the development and deployment of 
AI systems.
Data governance also involves privacy, ethics and data 
transparency. On the other hand, AI governance refers 
to the policies, regulations, and guidelines established to 
control the development, deployment, and use of AI sys-
tems [26][27]. In data governance, the quality and integ-
rity of data, communication with other areas, compliance 
with access protocols and data processing capabilities are 
covered.
In the field of data governance, there are three key roles 10 

 

       Table 8. Safety of Algorithms of Machine Learning Models 
 

Method categories Method categories Examples 
Requirements 
Engineering 
Use available domain 
knowledge to formulate 
use-case and safety 
requirements 

Data representatively 
requirements 

scenario coverage [337] 
- input space ontology [338] 

Robustness requirements - adversarial robustness metric [339] 
System fault tolerance requirements - runtime monitoring 

 - model diversity measure for redundancy [342,343,366] 
Safety performance measures - occlusion sensitivity [352] 
Plausibility requirements - AD behavior rules  

- sensible intermediate steps [358] 
- domain specific rules (physical, legal) 

Experience collection  
Development Apply 
Reasonable Design Choices at 
All Decision Points 

Design based on experience experience on model type, training method, initialization values   
[342] 

Incorporation of uncertainty  [345,346] 
Inclusion of expert knowledge via loss function NNs [348, 36] 

 – via topology NNs [349] 
- model repair RL [350] 
 - safe learning [351, 352] 

Robustness enhancements - regularization [353] 
 - robustification of training data [353] 
 - counterexample 
-guided data augmentation [354] 

Verification  
Check Against Test Data and 
Model Requirements 

Formal verification of rules, model, 
KPIs 

- solvers NNs [355,356] 
- boundary approximation NNs [357, 358] 
- search algorithms [359] 

Validation 
 
 Find Missing.  

  

. . . Test Cases Input space coverage checks  
Experience coverage checks  
Model coverage checks - concolic testing NNs [360] 

 - counterexample generation [360, 361, 362] 
. . . Requirements Via 
Qualitative Model Analysis 

Attention analysis through heatmapping  - back-propagation based, e.g. NNs [363] 
- model agnostic, e.g. [364,365,366] 

Feature visualization - method collection [367] 
Explanatory output - textual explanations NNs [368] 

- hierarchical information [369] 
. . . Requirements Via 
Quantitative Model Analysis 

Rule extraction - locally via ILP [370] 
 - global model agnostic, e.g. VIA [371]  
- global NN specific methods [372] 

Sub-task/concept analysis - Neural Stethoscopes NNs [373] 
 - concept embedding and attribution analysis NNs [375, 374]  
- ReNN modularized topology [374] 

 
3.2. Hardware Development 
We use the RAMI model as one of the most common and famous models in the development of AI products. RAMI 
4.0 is the real reference architecture for Industry 4.0 with relevant standards. Accordingly, standardization during the 
development of AI systems is carried out according to Figure 10. 
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of data management, data supervisor and data technician.
All three roles are responsible for overseeing the three 
areas of data operations, data quality monitoring, and data
quality improvement. Figure 12 shows the tasks of each 
role in each area.
By reviewing the papers and standards, Tables 10, 11, 12, 
13 and 14 present the checklists, methods and standards 
of this field in detail [28]; [16]; [29]; [30]
Data governance frameworks provide a systematic ap-
proach to managing and regulating data management in 
an organization. The most famous frameworks are as fol-
lows: Strategic Information Management Model (SAM), 
Asset Information Model (AIM), DAMA-DMBOK Frame-
work, DMBOK Framework, DAMA Advanced Data Man-
agement Framework, Data Governance Institute (DGI) 
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3.4. Data governance 
In artificial intelligence (AI), governance is often presented in two parts: data and AI. The former refers to the 
policies, procedures and practices that organizations have in place to manage the data they collect, store and use. It 
is critical for ensuring the quality, integrity, and security of data, which are in turn essential to the development and 
deployment of AI systems . 
Data governance also involves issues of privacy, ethics and data transparency. On the other hand, AI governance 
refers to the policies, regulations, and guidelines established to control the development, deployment, and use of AI 
systems [27]. In data governance, the quality and integrity of data, communication with other areas, compliance with 
access protocols and data processing capabilities are covered . 
In the field of data governance, there are three key roles of data management, data supervisor and data technician. 
All three roles are responsible for overseeing the three areas of data operations, data quality monitoring, and data 
quality improvement. Figure 12 shows the tasks of each role in each area. 
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Programmable controllers [170]; IEC 62832 [171], [172], [173]; IEC 61508 - functional safety requirements [174]; IEC 
62443 - Industrial communication networks - IT security for networks and systems [175], [176], [177], [178];  IEC 61131 
– Programmable controllers [179]. 

 
3.3. Software Testing  
Most AI-based systems are made of one or more AI components (e.g., an ML model) surrounded by a substantial 
array of traditional software that provides a supporting infrastructure, typically consisting of common components 
such as a user interface and a database. Even "pure" AI components are implemented in software and therefore can 
be flawed like any other software. Therefore, when testing an AI-based system, conventional software testing 
methods are still required. However, AI-based systems have a number of special features that necessitate additional 

Table 9. Development phase standards
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3.5. Evaluation Criteria in Machine Learning Algorithms 
The evaluation of AI products involves functional [32]; [33] and non-functional [34] Evaluation; in this section, the 
focus is on performance criteria of artificial intelligence systems. These criteria that are obtained based on 
mathematical formulas are meant for measuring the quantitative behavior of a system. Table 14 shows the 
Evaluation criteria in different artificial intelligence issues . 

 
                                             Table 14. Evaluation criteria 

Artificial Intelligence Performance Evaluation Metrics 
Reinforcement 

Learning 
Unsupervised learning 

 
Supervised learning 
 

 
- Clustering Classification Regression 

- Jaccard Index 
Silhouette Coefficient 
Rand Index (RI) 
Davies-Bouldin  Index 

Accuracy 
Precision 
ROC Curve 
Confusion Matrix 

MAPE 
RMSE 
MAE 
RSquard (R²) 

 

 
4. Summary & Results 
In this section, we present the final conclusion of this paper. Figure 13 shows that a majority of these Evaluations 
are effective in the data section; the designed architecture model of machine learning and the results of these tests 
and Evaluations can be seen in the outputs section . 
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Based on [16] and [324], Table 15 shows the checklist of reliability Evaluation of AI-based system during its life 
cycle . 
 

Table 15. AI reliability Evaluation checklists in the life cycle 
Trustworthy AI 

Collect and understand data Modeling Establishment 
and 
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network data 

Administrative 
and 
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quality 
control 

unbiased data augmenting 
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trustworthy 
preprocessing 
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training 
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post-
processing 

Trustworthy 
deployment 
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Attack 
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And also due to the lack of a comprehensive standard covering all aspects of AI product production, we decided to 
present a roadmap for standardization by studying, collecting and categorizing standards in the field of AI product 
production. In Figure 16, all stages of life cycle, the steps of Evaluation, validation and elimination of risks can be 
seen. These steps are achieved by evaluating the quantitative and qualitative criteria mentioned in this paper . 

16 

 

 

 
                           Figure 13. Examining the stages of AI software development 
 
Based on [16] and [324], Table 15 shows the checklist of reliability Evaluation of AI-based system during its life 
cycle . 
 

Table 15. AI reliability Evaluation checklists in the life cycle 
Trustworthy AI 

Collect and understand data Modeling Establishment 
and 
monitoring 

Social 
network data 

Administrative 
and 
organizational 
data 

quality 
control 

unbiased data augmenting 
data 

crowdsourcing data 
privacy 

trustworthy 
preprocessing 

Trustworthy 
training 

Trustworthy 
post-
processing 

Trustworthy 
deployment 
Choose 
Trustworthy 
monitoring 
tools 
Evaluation 
the 
Trustworthy 
of the model 

Quality 
precision 
Reliability 
Folk 
accents, 
non-standard 
dialects, 
misspellings   

Historical 
prejudices 
Label 
correction 

Targeted 
data 
collection 
Obvious 
cheatin 

Social unbias 
Representation 
unbias 
Data 
preparation 
unbias 
data non-
poisoning 
Temporal 
unbias 

collapse Unbiased 
Quality 
control 
Impartiality 

 Domain 
adaptation 
Unfair pre-
processing 
Data 
cleansing 
Explainability 

Domain 
robustness 
Fairness-
enhancing 
processing 
Adversaries 
Attack 
Explainability 

Unfair post-
processing 
Adversarial 
attacks 

 
 
Border 
erosion 

 

 
And also due to the lack of a comprehensive standard covering all aspects of AI product production, we decided to 
present a roadmap for standardization by studying, collecting and categorizing standards in the field of AI product 
production. In Figure 16, all stages of life cycle, the steps of Evaluation, validation and elimination of risks can be 
seen. These steps are achieved by evaluating the quantitative and qualitative criteria mentioned in this paper . 

17 

 

 
Figure 14. Details of The Construction Stages of Artificial Intelligence-Based Systems 
         Table 16. Life cycle-based system Evaluation checklist 

 Initial actions Modeling Deployment and monitoring 

AI evaluation Create warehouse and ID 
pre-design 
Application 
Define users 

operational environment 
 

System architecture 
Establishment qualities 
Operational functions 
Version control scheme 
System performance monitoring plan 
System health check 

Version control of the system 
Performance monitoring of the system 

System health check 

Algorithm 
evaluation 

Creating an ID 
Pre-design 
Use cases 

Designing the technical environment for 
the algorithm 
Designing deployment metrics for the 
algorithm 
Designing operational metrics for the 
algorithm 
Designing version control for the 
algorithm 
Designing performance monitoring for 
the algorithm 
Algorithm design health check  

Algorithm version control 
Performance monitoring of the 

algorithm 
Algorithm health check 

 
5.Conclusion 
The proliferation of artificial intelligence products and the rapid adoption of algorithms in business and global 
society have created the need for regulatory frameworks and evaluation criteria to ensure that the public interest is 
maintained. Standards, checklists, and Evaluation criteria provide a structured approach to the development, 
evaluation, and monitoring of AI-based products. The use of standards, tests and checklists has become necessary to 
create public trust, accountability and operationalization of artificial intelligence systems . 
This paper has been presented to guide researchers and practitioners in the field of evaluation and testing of artificial 
intelligence systems. For the first time, this survey presented a comprehensive and complete review (by examining 
more than 200 papers and standards) on how to evaluate artificial intelligence systems according to the categories of 
standards, checklists and methods. These categories have been offered according to the review of papers in terms of 
quantitative and qualitative evaluations during the development of artificial intelligence products. As a future 
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Framework, IBM Data Governance Council Framework, 
SAS Data Governance Framework. These frameworks 
provide a comprehensive approach to managing data 
from creation to provision (throughout the data lifecycle), 
including data quality, data architecture, data modeling, 
cloud data management, data warehousing and business 
intelligence, data storage and operations, data security, 
master data management, data integration, content and 
documentation management. Based on this framework, 
the following checklist should be checked. Based on [13] 
and [31], the data governance Evaluation checklist and 
data quality Evaluation are compiled in Tables 12 and 13.

3.5. Evaluation Criteria in Machine Learning Algorithms
The evaluation of AI products involves functional [32]; 
[33] and non-functional [34] evaluation; in this section, 
the focus is on performance criteria of AI systems. The 
criteria that are obtained based on mathematical formulas 
are meant for measuring the quantitative behavior of a 
system. Table 14 shows the evaluation criteria in different 
AI issues.

4. Discussion section & Results
In this section, we present the final conclusion of this pa-
per. Figure 13 shows that a majority of these evaluations 
is effective in the data section; the designed architecture 
model of machine learning and the results of these tests 
and evaluations can be seen in the outputs section.
Based on [16] and [324], Table 15 shows the checklist of 
reliability evaluation of AI-based system during its life 
cycle.

Considering the lack of a comprehensive standard cov-
ering all aspects of AI product production, we decided to 
present a roadmap for standardization by studying, collect-
ing and categorizing standards in the field of AI product 
production. In Figure 16, all stages of life cycle, the steps 
of evaluation, validation and elimination of risks are pre-
sented. These steps are achieved by evaluating the quanti-
tative and qualitative criteria mentioned in this paper.

5.Conclusion
The proliferation of AI products and the rapid adoption 
of algorithms in business and global society have cre-
ated the need for regulatory frameworks and evaluation 
criteria to ensure that the public interest is maintained. 
Standards, checklists, and Evaluation criteria provide a 
structured approach to the development, evaluation, and 
monitoring of AI-based products. The use of standards, 
tests and checklists has become necessary to create public 
trust, accountability and operationalization of AI systems.
This paper has been presented to guide researchers and 
practitioners in the field of evaluation and testing of AI 
systems. For the first time, this survey presented a com-
prehensive and complete review (by examining more 
than 200 papers and standards) on how to evaluate AI 
systems according to the categories of standards, check-
lists and methods. These categories have been offered ac-
cording to the review of papers in terms of quantitative 
and qualitative evaluations during the development of AI 
products. As a future research direction, we may present 
specific and clear examples of how to use checklists, test 
and evaluations in critical industries and use cases.
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Based on [16] and [324], Table 15 shows the checklist of reliability Evaluation of AI-based system during its life 
cycle . 
 

Table 15. AI reliability Evaluation checklists in the life cycle 
Trustworthy AI 

Collect and understand data Modeling Establishment 
and 
monitoring 

Social 
network data 

Administrative 
and 
organizational 
data 

quality 
control 

unbiased data augmenting 
data 

crowdsourcing data 
privacy 

trustworthy 
preprocessing 

Trustworthy 
training 

Trustworthy 
post-
processing 

Trustworthy 
deployment 
Choose 
Trustworthy 
monitoring 
tools 
Evaluation 
the 
Trustworthy 
of the model 

Quality 
precision 
Reliability 
Folk 
accents, 
non-standard 
dialects, 
misspellings   

Historical 
prejudices 
Label 
correction 
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data 
collection 
Obvious 
cheatin 

Social unbias 
Representation 
unbias 
Data 
preparation 
unbias 
data non-
poisoning 
Temporal 
unbias 

collapse Unbiased 
Quality 
control 
Impartiality 

 Domain 
adaptation 
Unfair pre-
processing 
Data 
cleansing 
Explainability 

Domain 
robustness 
Fairness-
enhancing 
processing 
Adversaries 
Attack 
Explainability 

Unfair post-
processing 
Adversarial 
attacks 

 
 
Border 
erosion 

 

 
And also due to the lack of a comprehensive standard covering all aspects of AI product production, we decided to 
present a roadmap for standardization by studying, collecting and categorizing standards in the field of AI product 
production. In Figure 16, all stages of life cycle, the steps of Evaluation, validation and elimination of risks can be 
seen. These steps are achieved by evaluating the quantitative and qualitative criteria mentioned in this paper . 

Table 16. Life cycle-based system Evaluation
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